Skip to main content

ChatGPT for Developers: Complete Coding Guide

Master ChatGPT for programming in 7 days - From basics to advanced techniques with real-world examples.

🎯 What You'll Learn​

By the end of this guide, you'll be able to:

  • βœ… Write effective prompts for code generation
  • βœ… Debug code 3x faster with ChatGPT
  • βœ… Learn new frameworks in hours instead of days
  • βœ… Refactor legacy code confidently
  • βœ… Generate comprehensive tests
  • βœ… Optimize your development workflow

Time investment: 30 min/day Γ— 7 days Skill level: Beginner to Advanced Cost: Free (ChatGPT Free) or $20/month (Plus for GPT-4)


🎬 Quick Demo (30 seconds)​

Video Coming Soon

πŸ“Ή Demo video in production - Expected release: Week of 2025-11-17

The video will demonstrate:

  • Real-time code generation with ChatGPT
  • Debugging a React component with AI assistance
  • Refactoring legacy code step-by-step
  • Test generation workflow

What you'll see in 30 seconds:

  • How to structure prompts for better code quality
  • Live debugging session: finding and fixing a bug
  • Before/after comparison of AI-assisted refactoring
  • Productivity gains: manual coding vs. ChatGPT-assisted

Full transcript will be available on video release


Day 1: Foundations​

Understanding ChatGPT's Strengths & Weaknesses​

What ChatGPT Does Well:

  • βœ… Explaining code concepts
  • βœ… Generating boilerplate
  • βœ… Debugging logic errors
  • βœ… Writing tests
  • βœ… Code translation between languages

What ChatGPT Struggles With:

  • ❌ Very new libraries (post-2023)
  • ❌ Company-specific code
  • ❌ Complex system design
  • ❌ Security-critical code (review needed)

Your First Prompt​

❌ Bad Prompt:

write a login function

βœ… Good Prompt:

Create a secure login function in Python using Flask and SQLAlchemy.

Requirements:
- Hash passwords with bcrypt
- Return JWT token on success
- Handle errors (user not found, wrong password)
- Include input validation
- Add docstring with examples

Use type hints and follow PEP 8.

ChatGPT Output:

from flask import jsonify, request
from werkzeug.security import check_password_hash
from models import User
import jwt
import datetime
from typing import Tuple, Dict
import re

def validate_email(email: str) -> bool:
"""Validate email format using regex."""
pattern = r'^[\w\.-]+@[\w\.-]+\.\w+$'
return re.match(pattern, email) is not None

def login_user(email: str, password: str) -> Tuple[Dict, int]:
"""
Authenticate user and return JWT token.

Args:
email: User's email address
password: Plain text password

Returns:
Tuple of (response_dict, http_status_code)

Example:
>>> login_user('user@example.com', 'password123')
({'token': 'eyJ0eXAiOiJKV1...'}, 200)

Raises:
ValueError: If email format is invalid
"""

# Input validation
if not email or not password:
return {'error': 'Email and password are required'}, 400

if not validate_email(email):
return {'error': 'Invalid email format'}, 400

# Find user
user = User.query.filter_by(email=email).first()

if not user:
return {'error': 'Invalid credentials'}, 401

# Verify password
if not check_password_hash(user.password_hash, password):
return {'error': 'Invalid credentials'}, 401

# Generate JWT token
token = jwt.encode({
'user_id': user.id,
'email': user.email,
'exp': datetime.datetime.utcnow() + datetime.timedelta(hours=24)
}, app.config['SECRET_KEY'], algorithm='HS256')

return {
'token': token,
'user': {
'id': user.id,
'email': user.email,
'name': user.name
}
}, 200

Key lesson: Specific prompts β†’ Better code

Practice Exercise​

Generate a function for your project using the good prompt pattern:

  1. Specify language and framework
  2. List requirements
  3. Request error handling
  4. Ask for documentation
  5. Specify code style

Day 2: Debugging with ChatGPT​

Debugging Pattern​

Template:

I'm getting this error:
[paste error message]

Here's my code:
[paste relevant code]

Context:
- Language/Framework: [e.g., React 18 + TypeScript]
- What I'm trying to do: [brief explanation]
- What I've tried: [list attempts]

Please explain what's wrong and how to fix it.

Real Example: React Infinite Render​

Your Code:

function UserProfile({ userId }) {
const [user, setUser] = useState(null);

useEffect(() => {
fetch(`/api/users/${userId}`)
.then(res => res.json())
.then(setUser);
}); // Bug: missing dependency array

return <div>{user?.name}</div>;
}

Error:

Warning: Maximum update depth exceeded. This can happen when a component
calls setState inside useEffect without a dependency array.

Prompt to ChatGPT:

I'm getting "Maximum update depth exceeded" error in React.

Code:
[paste code above]

Context:
- React 18 + TypeScript
- Trying to fetch user data on component mount
- Error appears immediately on page load

Please explain and fix.

ChatGPT Response:

The problem is the missing dependency array in useEffect.

Current code:
useEffect(() => {
fetch(`/api/users/${userId}`)
.then(res => res.json())
.then(setUser);
}); // Runs after EVERY render

What happens:
1. Component renders
2. useEffect runs, fetches data
3. setUser() causes re-render
4. useEffect runs again (because no dependency array)
5. Infinite loop!

Fix:
useEffect(() => {
fetch(`/api/users/${userId}`)
.then(res => res.json())
.then(setUser);
}, [userId]); // Only run when userId changes

Complete improved version:
useEffect(() => {
let cancelled = false;

const fetchUser = async () => {
try {
const res = await fetch(`/api/users/${userId}`);
if (!res.ok) throw new Error('Failed to fetch user');

const data = await res.json();
if (!cancelled) setUser(data);
} catch (error) {
console.error('Error fetching user:', error);
// Handle error state
}
};

fetchUser();

return () => {
cancelled = true; // Cleanup to prevent state update on unmounted component
};
}, [userId]);

Debugging Power: ChatGPT explains WHY (not just how to fix)

Practice Exercise​

Debug a real issue from your codebase using the template above.


Day 3: Learning New Technologies​

Learning Pattern​

Instead of reading docs for hours, use ChatGPT as a tutor:

Phase 1: Overview (5 min)

Explain [Technology] in simple terms for an experienced developer.

Include:
- What problem it solves
- Key concepts (5-7 most important)
- When to use it vs alternatives
- 30-second example

Example: React developer learning Vue 3

Phase 2: Hello World (10 min)

Create a simple [App Type] using [Technology].

Requirements:
- [Feature 1]
- [Feature 2]
- [Feature 3]
- Include comments explaining key parts
- Production-ready code quality

Example: Todo app with Vue 3 Composition API

Phase 3: Real-World Patterns (15 min)

Show me best practices for [Specific Task] in [Technology].

Include:
- Modern approach (2024)
- Error handling
- Performance considerations
- Common pitfalls to avoid
- Code example

Example: State management in Vue 3

Real Example: Learning FastAPI​

Prompt 1:

Explain FastAPI for an Express.js developer.

Include:
- Key differences from Express
- Main advantages
- When to choose FastAPI
- 30-second example

ChatGPT gives clear comparison:

# FastAPI (Python) vs Express (JavaScript) - Key Differences

1. Type Safety: FastAPI uses Python type hints for automatic validation
2. Auto Documentation: Built-in Swagger UI (no extra setup)
3. Async: Native async/await support
4. Performance: Fast as Node.js (due to Starlette/Uvicorn)

When to use FastAPI:
βœ… Python ecosystem (ML, data science)
βœ… Need automatic API docs
βœ… Strong typing important
❌ Node.js ecosystem required
❌ Team only knows JavaScript

# 30-second example
from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()

class User(BaseModel):
name: str
email: str

@app.post("/users")
async def create_user(user: User):
# Type validation automatic!
# API docs automatic!
return {"id": 123, **user.dict()}

# Run: uvicorn main:app --reload
# Docs: http://localhost:8000/docs (auto-generated!)

Prompt 2:

Create a REST API for blog posts using FastAPI.

Requirements:
- CRUD operations (create, read, update, delete)
- SQLite database with SQLAlchemy
- Pydantic models for validation
- Error handling
- Include all necessary imports

Result: Complete working API in 2 minutes

Practice Exercise​

Learn a new framework/library in 30 minutes:

  1. Get overview prompt
  2. Build hello world prompt
  3. Implement real feature prompt

Day 4: Code Refactoring​

Refactoring Pattern​

Refactor this code to improve [specific aspect]:

[paste code]

Requirements:
- [Improvement 1]
- [Improvement 2]
- Keep functionality identical
- Add comments explaining changes

Context:
- [Framework/language details]
- [Performance requirements if any]

Real Example: Cleaning Messy React Component​

Original Code:

// 300-line component with everything mixed together
function Dashboard() {
const [users, setUsers] = useState([]);
const [products, setProducts] = useState([]);
const [orders, setOrders] = useState([]);
const [loading, setLoading] = useState(true);
const [error, setError] = useState(null);
// ... 10 more state variables

useEffect(() => {
// 100 lines of data fetching logic
fetch('/api/users').then(...)
fetch('/api/products').then(...)
fetch('/api/orders').then(...)
// ... more fetching
}, []);

// 50 lines of event handlers

return (
<div>
{/* 150 lines of JSX */}
</div>
);
}

Prompt:

Refactor this React component using best practices:

[paste code]

Requirements:
- Extract custom hooks for data fetching
- Separate into smaller components
- Use React Query for caching
- Add proper TypeScript types
- Improve loading/error states

ChatGPT Output:

// 1. Custom hook for data fetching
import { useQuery } from '@tanstack/react-query';

function useDashboardData() {
const users = useQuery({
queryKey: ['users'],
queryFn: () => fetch('/api/users').then(r => r.json())
});

const products = useQuery({
queryKey: ['products'],
queryFn: () => fetch('/api/products').then(r => r.json())
});

const orders = useQuery({
queryKey: ['orders'],
queryFn: () => fetch('/api/orders').then(r => r.json())
});

return {
users: users.data,
products: products.data,
orders: orders.data,
isLoading: users.isLoading || products.isLoading || orders.isLoading,
error: users.error || products.error || orders.error
};
}

// 2. Main component (now clean)
export function Dashboard() {
const { users, products, orders, isLoading, error } = useDashboardData();

if (isLoading) return <LoadingSpinner />;
if (error) return <ErrorMessage error={error} />;

return (
<DashboardLayout>
<UsersSection users={users} />
<ProductsSection products={products} />
<OrdersSection orders={orders} />
</DashboardLayout>
);
}

// 3. Separated components
function UsersSection({ users }: { users: User[] }) {
return (
<section>
<h2>Users</h2>
<UserList users={users} />
</section>
);
}

// ... more components

Before: 300 lines, hard to test, hard to read After: 50-line main component, 5 focused sub-components, easy to test

Practice Exercise​

Find a messy file in your codebase and refactor it with ChatGPT.


Day 5: Test Generation​

Testing Pattern​

Generate comprehensive tests for this code:

[paste code]

Requirements:
- Framework: [Jest/Pytest/etc]
- Cover happy path and edge cases
- Include setup/teardown if needed
- Mock external dependencies
- Aim for >90% coverage

Real Example: Testing API Endpoint​

Code to Test:

@app.route('/api/discounts', methods=['POST'])
def calculate_discount():
data = request.get_json()

price = data.get('price')
user_tier = data.get('user_tier')
promo_code = data.get('promo_code')

if not price or price <= 0:
return jsonify({'error': 'Invalid price'}), 400

discount = 0

# Tier discounts
if user_tier == 'bronze': discount += 5
elif user_tier == 'silver': discount += 10
elif user_tier == 'gold': discount += 15

# Promo code
if promo_code == 'SAVE20':
discount += 20

final_price = price * (1 - discount / 100)

return jsonify({
'original_price': price,
'discount_percent': discount,
'final_price': final_price
})

Prompt:

Generate pytest tests for this Flask endpoint:

[paste code]

Requirements:
- Test all user tiers
- Test with/without promo code
- Test edge cases (negative price, invalid tier, etc.)
- Test promo code stacking with tiers
- Use pytest fixtures for app setup

ChatGPT Output:

import pytest
from flask import Flask
from decimal import Decimal

@pytest.fixture
def app():
"""Create Flask app for testing"""
app = create_app('testing')
return app

@pytest.fixture
def client(app):
"""Create test client"""
return app.test_client()

class TestDiscountCalculation:
"""Test discount calculation endpoint"""

def test_no_tier_no_promo(self, client):
"""Test base case: no discount"""
response = client.post('/api/discounts', json={
'price': 100,
'user_tier': None,
'promo_code': None
})

assert response.status_code == 200
data = response.get_json()
assert data['original_price'] == 100
assert data['discount_percent'] == 0
assert data['final_price'] == 100

@pytest.mark.parametrize('tier,expected_discount', [
('bronze', 5),
('silver', 10),
('gold', 15),
])
def test_tier_discounts(self, client, tier, expected_discount):
"""Test each tier discount level"""
response = client.post('/api/discounts', json={
'price': 100,
'user_tier': tier,
'promo_code': None
})

data = response.get_json()
assert data['discount_percent'] == expected_discount
assert data['final_price'] == 100 - expected_discount

def test_promo_code_alone(self, client):
"""Test promo code without tier"""
response = client.post('/api/discounts', json={
'price': 100,
'user_tier': None,
'promo_code': 'SAVE20'
})

data = response.get_json()
assert data['discount_percent'] == 20
assert data['final_price'] == 80

def test_tier_plus_promo_stacking(self, client):
"""Test that tier and promo discounts stack"""
response = client.post('/api/discounts', json={
'price': 100,
'user_tier': 'gold', # 15%
'promo_code': 'SAVE20' # 20%
})

data = response.get_json()
assert data['discount_percent'] == 35 # 15 + 20
assert data['final_price'] == 65

def test_invalid_price_zero(self, client):
"""Test error handling for zero price"""
response = client.post('/api/discounts', json={
'price': 0,
'user_tier': 'gold'
})

assert response.status_code == 400
assert 'error' in response.get_json()

def test_invalid_price_negative(self, client):
"""Test error handling for negative price"""
response = client.post('/api/discounts', json={
'price': -50,
'user_tier': 'gold'
})

assert response.status_code == 400

def test_missing_price(self, client):
"""Test error when price not provided"""
response = client.post('/api/discounts', json={
'user_tier': 'gold'
})

assert response.status_code == 400

def test_invalid_promo_code(self, client):
"""Test that invalid promo codes are ignored"""
response = client.post('/api/discounts', json={
'price': 100,
'user_tier': 'silver',
'promo_code': 'INVALID'
})

data = response.get_json()
# Should only apply tier discount (10%)
assert data['discount_percent'] == 10

def test_large_price(self, client):
"""Test with large price values"""
response = client.post('/api/discounts', json={
'price': 999999.99,
'user_tier': 'gold',
'promo_code': 'SAVE20'
})

assert response.status_code == 200
data = response.get_json()
# 35% off 999999.99
expected = 999999.99 * 0.65
assert abs(data['final_price'] - expected) < 0.01

Coverage: 95%+ with all edge cases

Practice Exercise​

Generate tests for a function you wrote recently.


Day 6: Advanced Prompting Techniques​

Technique 1: Chain of Thought​

Ask ChatGPT to explain its reasoning:

[Your coding question]

Please think step-by-step:
1. Analyze the requirements
2. Consider edge cases
3. Choose the best approach
4. Implement the solution
5. Explain trade-offs

Example:

Design a rate limiting system for an API.

Think step-by-step about:
1. Different rate limiting algorithms
2. Where to store rate limit data
3. Edge cases (distributed systems, clock skew)
4. Implementation approach
5. Trade-offs of each decision

Technique 2: Iterative Refinement​

[Initial request]

# After seeing output:
"Great! Now improve it by [specific change]"

# Then:
"Add [feature]"

# Then:
"Optimize for [goal]"

Technique 3: Role-Based Prompting​

Act as a senior [role] with 10 years experience.

Review this code and provide:
- What a junior would miss
- Best practices specific to [domain]
- Production readiness checklist

Code:
[paste code]

Example:

Act as a senior DevOps engineer.

Review this Dockerfile and provide:
- Security issues
- Performance optimizations
- Production readiness checklist

Dockerfile:
FROM python:latest
COPY . /app
WORKDIR /app
RUN pip install -r requirements.txt
CMD python app.py

ChatGPT (as DevOps expert):

# Issues found:

1. SECURITY: Using 'latest' tag (unpredictable)
2. SECURITY: Running as root (default)
3. PERFORMANCE: Installing all deps every build (no caching)
4. PERFORMANCE: Large image size (python:latest ~900MB)
5. RELIABILITY: No health check
6. DEBUGGING: No logging configuration

# Improved Dockerfile:

FROM python:3.11-slim as builder # βœ… Specific version, smaller base

# Create non-root user
RUN useradd -m -u 1000 appuser

# Install dependencies (cached layer)
WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt

# Copy app code
COPY --chown=appuser:appuser . .

# Switch to non-root user
USER appuser

# Health check
HEALTHCHECK --interval=30s --timeout=3s \
CMD python -c "import requests; requests.get('http://localhost:8000/health')"

# Expose port
EXPOSE 8000

# Run app
CMD ["gunicorn", "-w", "4", "-b", "0.0.0.0:8000", "app:app"]

# Production checklist:
# βœ… Specific base image version
# βœ… Non-root user
# βœ… Dependency caching
# βœ… Small image size (~150MB vs 900MB)
# βœ… Health check
# βœ… Production WSGI server (gunicorn)
# βœ… Proper logging (gunicorn logs to stdout)

Day 7: Building Your Workflow​

Create Your Prompt Library​

Save effective prompts for reuse:

# prompts.md

## Code Review
Act as a senior developer. Review this [language] code for:
1. Bugs and logic errors
2. Performance issues
3. Security vulnerabilities
4. Code style and readability
5. Missing edge cases

Provide specific line numbers and fixes.

---

## Documentation
Generate comprehensive documentation for this code:
- Purpose and overview
- Parameters with types
- Return values
- Usage examples
- Edge cases and error handling

Format: [JSDoc/docstring/etc]

---

## Refactoring
Refactor this code following [framework] best practices:
- Improve readability
- Reduce complexity
- Optimize performance
- Add proper types
- Follow [style guide]

Explain each major change.

Keyboard Shortcuts / IDE Integration​

VS Code Extension: ChatGPT - Genie AI

  • Select code β†’ Right click β†’ "Ask ChatGPT"
  • Keyboard shortcut: Ctrl+Shift+G

Command Line:

# Create alias
alias askgpt='function _ask(){ curl -X POST https://api.openai.com/v1/chat/completions -H "Content-Type: application/json" -H "Authorization: Bearer $OPENAI_API_KEY" -d "{\"model\":\"gpt-4\",\"messages\":[{\"role\":\"user\",\"content\":\"$1\"}]}" | jq -r ".choices[0].message.content"; }; _ask'

# Usage
askgpt "Explain this regex: ^[\w\.-]+@[\w\.-]+\.\w+$"

Daily Workflow Integration​

Morning:

  • Review overnight errors with ChatGPT
  • Plan day's tasks (architecture questions)

During Coding:

  • Generate boilerplate
  • Debug errors as they occur
  • Explain unfamiliar code

Before Commit:

  • Generate tests
  • Write commit message
  • Review changes

Code Review:

  • Get AI review before human review
  • Explain complex changes for PR description

πŸ’‘ Pro Tips​

1. Always Verify AI Code​

# Don't trust blindly!
# ❌ Bad: Copy-paste without reading
# βœ… Good: Read, understand, test

ai_generated_code = get_from_chatgpt()

# Read it
understand(ai_generated_code)

# Test it
run_tests(ai_generated_code)

# Review for security
check_security(ai_generated_code)

# Then use it

2. Use ChatGPT to Learn, Not Just Get Answers​

# ❌ Bad: "Fix my code"
# βœ… Good: "Explain why this doesn't work and teach me the concept"

3. Combine with Documentation​

# Best workflow:
1. Read official docs (15 min)
2. Ask ChatGPT for clarification (5 min)
3. Try implementation (20 min)
4. Debug with ChatGPT if needed (10 min)

Total: 50 min to learn new concept

4. Track Cost (GPT-4)​

# If using API
import openai

def count_tokens(text):
# Approximate: 1 token β‰ˆ 4 characters
return len(text) // 4

prompt = "Your prompt here"
tokens = count_tokens(prompt)
cost = tokens * $0.03 / 1000 # GPT-4 pricing

print(f"Estimated cost: ${cost:.4f}")

⚠️ Common Pitfalls​

1. Hallucinated Functions​

ChatGPT might invent functions that don't exist:

# ChatGPT might suggest:
result = pandas.magic_function(df) # ❌ Doesn't exist!

# Always verify in docs

2. Outdated Information​

Training data cutoff (Jan 2024 for GPT-4):

# ❌ ChatGPT doesn't know about:
- Libraries released after 2024
- Latest API changes
- Recent security vulnerabilities

# βœ… Solution: Provide documentation in prompt

3. Over-Engineering​

ChatGPT tends to suggest complex solutions:

# You asked: "Store user preferences"

# ChatGPT suggests: Redis + RabbitMQ + Kafka + Microservices

# Reality: JSON file is fine for your use case

# Always question: "Is this complexity necessary?"

πŸ“Š Measuring Your Progress​

After 7 days, you should be able to:

TaskBeforeAfterImprovement
Debugging time30 min/bug10 min/bug3x faster
Learning new library4 hours1 hour4x faster
Writing tests2x code time0.5x code time4x faster
Code reviews45 min15 min3x faster

ROI Calculation:

  • Time saved: ~2 hours/day
  • Cost: Free or $20/month
  • Value: Priceless (learn faster, ship faster)

πŸš€ Next Steps​

Week 2: Advanced techniques

  • Combine ChatGPT with other tools (Copilot, Cursor)
  • Build custom GPTs for your stack
  • Automate repetitive tasks

Month 2: Team adoption

  • Share prompt library with team
  • Establish best practices
  • Measure team productivity gains

Quarter 1: Master AI-assisted development

  • Build entire features with AI assistance
  • Teach junior developers using AI
  • Contribute to open source faster

πŸ”— Resources​


Last Updated: 2025-11-09 | Difficulty: Beginner to Advanced | Time: 7 days

Want to explore other AI coding tools? Check our Complete Comparison Guide.