ChatGPT for Developers: Complete Coding Guide
Master ChatGPT for programming in 7 days - From basics to advanced techniques with real-world examples.
π― What You'll Learnβ
By the end of this guide, you'll be able to:
- β Write effective prompts for code generation
- β Debug code 3x faster with ChatGPT
- β Learn new frameworks in hours instead of days
- β Refactor legacy code confidently
- β Generate comprehensive tests
- β Optimize your development workflow
Time investment: 30 min/day Γ 7 days Skill level: Beginner to Advanced Cost: Free (ChatGPT Free) or $20/month (Plus for GPT-4)
π¬ Quick Demo (30 seconds)β
πΉ Demo video in production - Expected release: Week of 2025-11-17
The video will demonstrate:
- Real-time code generation with ChatGPT
- Debugging a React component with AI assistance
- Refactoring legacy code step-by-step
- Test generation workflow
What you'll see in 30 seconds:
- How to structure prompts for better code quality
- Live debugging session: finding and fixing a bug
- Before/after comparison of AI-assisted refactoring
- Productivity gains: manual coding vs. ChatGPT-assisted
Full transcript will be available on video release
Day 1: Foundationsβ
Understanding ChatGPT's Strengths & Weaknessesβ
What ChatGPT Does Well:
- β Explaining code concepts
- β Generating boilerplate
- β Debugging logic errors
- β Writing tests
- β Code translation between languages
What ChatGPT Struggles With:
- β Very new libraries (post-2023)
- β Company-specific code
- β Complex system design
- β Security-critical code (review needed)
Your First Promptβ
β Bad Prompt:
write a login function
β Good Prompt:
Create a secure login function in Python using Flask and SQLAlchemy.
Requirements:
- Hash passwords with bcrypt
- Return JWT token on success
- Handle errors (user not found, wrong password)
- Include input validation
- Add docstring with examples
Use type hints and follow PEP 8.
ChatGPT Output:
from flask import jsonify, request
from werkzeug.security import check_password_hash
from models import User
import jwt
import datetime
from typing import Tuple, Dict
import re
def validate_email(email: str) -> bool:
"""Validate email format using regex."""
pattern = r'^[\w\.-]+@[\w\.-]+\.\w+$'
return re.match(pattern, email) is not None
def login_user(email: str, password: str) -> Tuple[Dict, int]:
"""
Authenticate user and return JWT token.
Args:
email: User's email address
password: Plain text password
Returns:
Tuple of (response_dict, http_status_code)
Example:
>>> login_user('user@example.com', 'password123')
({'token': 'eyJ0eXAiOiJKV1...'}, 200)
Raises:
ValueError: If email format is invalid
"""
# Input validation
if not email or not password:
return {'error': 'Email and password are required'}, 400
if not validate_email(email):
return {'error': 'Invalid email format'}, 400
# Find user
user = User.query.filter_by(email=email).first()
if not user:
return {'error': 'Invalid credentials'}, 401
# Verify password
if not check_password_hash(user.password_hash, password):
return {'error': 'Invalid credentials'}, 401
# Generate JWT token
token = jwt.encode({
'user_id': user.id,
'email': user.email,
'exp': datetime.datetime.utcnow() + datetime.timedelta(hours=24)
}, app.config['SECRET_KEY'], algorithm='HS256')
return {
'token': token,
'user': {
'id': user.id,
'email': user.email,
'name': user.name
}
}, 200
Key lesson: Specific prompts β Better code
Practice Exerciseβ
Generate a function for your project using the good prompt pattern:
- Specify language and framework
- List requirements
- Request error handling
- Ask for documentation
- Specify code style
Day 2: Debugging with ChatGPTβ
Debugging Patternβ
Template:
I'm getting this error:
[paste error message]
Here's my code:
[paste relevant code]
Context:
- Language/Framework: [e.g., React 18 + TypeScript]
- What I'm trying to do: [brief explanation]
- What I've tried: [list attempts]
Please explain what's wrong and how to fix it.
Real Example: React Infinite Renderβ
Your Code:
function UserProfile({ userId }) {
const [user, setUser] = useState(null);
useEffect(() => {
fetch(`/api/users/${userId}`)
.then(res => res.json())
.then(setUser);
}); // Bug: missing dependency array
return <div>{user?.name}</div>;
}
Error:
Warning: Maximum update depth exceeded. This can happen when a component
calls setState inside useEffect without a dependency array.
Prompt to ChatGPT:
I'm getting "Maximum update depth exceeded" error in React.
Code:
[paste code above]
Context:
- React 18 + TypeScript
- Trying to fetch user data on component mount
- Error appears immediately on page load
Please explain and fix.
ChatGPT Response:
The problem is the missing dependency array in useEffect.
Current code:
useEffect(() => {
fetch(`/api/users/${userId}`)
.then(res => res.json())
.then(setUser);
}); // Runs after EVERY render
What happens:
1. Component renders
2. useEffect runs, fetches data
3. setUser() causes re-render
4. useEffect runs again (because no dependency array)
5. Infinite loop!
Fix:
useEffect(() => {
fetch(`/api/users/${userId}`)
.then(res => res.json())
.then(setUser);
}, [userId]); // Only run when userId changes
Complete improved version:
useEffect(() => {
let cancelled = false;
const fetchUser = async () => {
try {
const res = await fetch(`/api/users/${userId}`);
if (!res.ok) throw new Error('Failed to fetch user');
const data = await res.json();
if (!cancelled) setUser(data);
} catch (error) {
console.error('Error fetching user:', error);
// Handle error state
}
};
fetchUser();
return () => {
cancelled = true; // Cleanup to prevent state update on unmounted component
};
}, [userId]);
Debugging Power: ChatGPT explains WHY (not just how to fix)
Practice Exerciseβ
Debug a real issue from your codebase using the template above.
Day 3: Learning New Technologiesβ
Learning Patternβ
Instead of reading docs for hours, use ChatGPT as a tutor:
Phase 1: Overview (5 min)
Explain [Technology] in simple terms for an experienced developer.
Include:
- What problem it solves
- Key concepts (5-7 most important)
- When to use it vs alternatives
- 30-second example
Example: React developer learning Vue 3
Phase 2: Hello World (10 min)
Create a simple [App Type] using [Technology].
Requirements:
- [Feature 1]
- [Feature 2]
- [Feature 3]
- Include comments explaining key parts
- Production-ready code quality
Example: Todo app with Vue 3 Composition API
Phase 3: Real-World Patterns (15 min)
Show me best practices for [Specific Task] in [Technology].
Include:
- Modern approach (2024)
- Error handling
- Performance considerations
- Common pitfalls to avoid
- Code example
Example: State management in Vue 3
Real Example: Learning FastAPIβ
Prompt 1:
Explain FastAPI for an Express.js developer.
Include:
- Key differences from Express
- Main advantages
- When to choose FastAPI
- 30-second example
ChatGPT gives clear comparison:
# FastAPI (Python) vs Express (JavaScript) - Key Differences
1. Type Safety: FastAPI uses Python type hints for automatic validation
2. Auto Documentation: Built-in Swagger UI (no extra setup)
3. Async: Native async/await support
4. Performance: Fast as Node.js (due to Starlette/Uvicorn)
When to use FastAPI:
β
Python ecosystem (ML, data science)
β
Need automatic API docs
β
Strong typing important
β Node.js ecosystem required
β Team only knows JavaScript
# 30-second example
from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class User(BaseModel):
name: str
email: str
@app.post("/users")
async def create_user(user: User):
# Type validation automatic!
# API docs automatic!
return {"id": 123, **user.dict()}
# Run: uvicorn main:app --reload
# Docs: http://localhost:8000/docs (auto-generated!)
Prompt 2:
Create a REST API for blog posts using FastAPI.
Requirements:
- CRUD operations (create, read, update, delete)
- SQLite database with SQLAlchemy
- Pydantic models for validation
- Error handling
- Include all necessary imports
Result: Complete working API in 2 minutes
Practice Exerciseβ
Learn a new framework/library in 30 minutes:
- Get overview prompt
- Build hello world prompt
- Implement real feature prompt
Day 4: Code Refactoringβ
Refactoring Patternβ
Refactor this code to improve [specific aspect]:
[paste code]
Requirements:
- [Improvement 1]
- [Improvement 2]
- Keep functionality identical
- Add comments explaining changes
Context:
- [Framework/language details]
- [Performance requirements if any]
Real Example: Cleaning Messy React Componentβ
Original Code:
// 300-line component with everything mixed together
function Dashboard() {
const [users, setUsers] = useState([]);
const [products, setProducts] = useState([]);
const [orders, setOrders] = useState([]);
const [loading, setLoading] = useState(true);
const [error, setError] = useState(null);
// ... 10 more state variables
useEffect(() => {
// 100 lines of data fetching logic
fetch('/api/users').then(...)
fetch('/api/products').then(...)
fetch('/api/orders').then(...)
// ... more fetching
}, []);
// 50 lines of event handlers
return (
<div>
{/* 150 lines of JSX */}
</div>
);
}
Prompt:
Refactor this React component using best practices:
[paste code]
Requirements:
- Extract custom hooks for data fetching
- Separate into smaller components
- Use React Query for caching
- Add proper TypeScript types
- Improve loading/error states
ChatGPT Output:
// 1. Custom hook for data fetching
import { useQuery } from '@tanstack/react-query';
function useDashboardData() {
const users = useQuery({
queryKey: ['users'],
queryFn: () => fetch('/api/users').then(r => r.json())
});
const products = useQuery({
queryKey: ['products'],
queryFn: () => fetch('/api/products').then(r => r.json())
});
const orders = useQuery({
queryKey: ['orders'],
queryFn: () => fetch('/api/orders').then(r => r.json())
});
return {
users: users.data,
products: products.data,
orders: orders.data,
isLoading: users.isLoading || products.isLoading || orders.isLoading,
error: users.error || products.error || orders.error
};
}
// 2. Main component (now clean)
export function Dashboard() {
const { users, products, orders, isLoading, error } = useDashboardData();
if (isLoading) return <LoadingSpinner />;
if (error) return <ErrorMessage error={error} />;
return (
<DashboardLayout>
<UsersSection users={users} />
<ProductsSection products={products} />
<OrdersSection orders={orders} />
</DashboardLayout>
);
}
// 3. Separated components
function UsersSection({ users }: { users: User[] }) {
return (
<section>
<h2>Users</h2>
<UserList users={users} />
</section>
);
}
// ... more components
Before: 300 lines, hard to test, hard to read After: 50-line main component, 5 focused sub-components, easy to test
Practice Exerciseβ
Find a messy file in your codebase and refactor it with ChatGPT.
Day 5: Test Generationβ
Testing Patternβ
Generate comprehensive tests for this code:
[paste code]
Requirements:
- Framework: [Jest/Pytest/etc]
- Cover happy path and edge cases
- Include setup/teardown if needed
- Mock external dependencies
- Aim for >90% coverage
Real Example: Testing API Endpointβ
Code to Test:
@app.route('/api/discounts', methods=['POST'])
def calculate_discount():
data = request.get_json()
price = data.get('price')
user_tier = data.get('user_tier')
promo_code = data.get('promo_code')
if not price or price <= 0:
return jsonify({'error': 'Invalid price'}), 400
discount = 0
# Tier discounts
if user_tier == 'bronze': discount += 5
elif user_tier == 'silver': discount += 10
elif user_tier == 'gold': discount += 15
# Promo code
if promo_code == 'SAVE20':
discount += 20
final_price = price * (1 - discount / 100)
return jsonify({
'original_price': price,
'discount_percent': discount,
'final_price': final_price
})
Prompt:
Generate pytest tests for this Flask endpoint:
[paste code]
Requirements:
- Test all user tiers
- Test with/without promo code
- Test edge cases (negative price, invalid tier, etc.)
- Test promo code stacking with tiers
- Use pytest fixtures for app setup
ChatGPT Output:
import pytest
from flask import Flask
from decimal import Decimal
@pytest.fixture
def app():
"""Create Flask app for testing"""
app = create_app('testing')
return app
@pytest.fixture
def client(app):
"""Create test client"""
return app.test_client()
class TestDiscountCalculation:
"""Test discount calculation endpoint"""
def test_no_tier_no_promo(self, client):
"""Test base case: no discount"""
response = client.post('/api/discounts', json={
'price': 100,
'user_tier': None,
'promo_code': None
})
assert response.status_code == 200
data = response.get_json()
assert data['original_price'] == 100
assert data['discount_percent'] == 0
assert data['final_price'] == 100
@pytest.mark.parametrize('tier,expected_discount', [
('bronze', 5),
('silver', 10),
('gold', 15),
])
def test_tier_discounts(self, client, tier, expected_discount):
"""Test each tier discount level"""
response = client.post('/api/discounts', json={
'price': 100,
'user_tier': tier,
'promo_code': None
})
data = response.get_json()
assert data['discount_percent'] == expected_discount
assert data['final_price'] == 100 - expected_discount
def test_promo_code_alone(self, client):
"""Test promo code without tier"""
response = client.post('/api/discounts', json={
'price': 100,
'user_tier': None,
'promo_code': 'SAVE20'
})
data = response.get_json()
assert data['discount_percent'] == 20
assert data['final_price'] == 80
def test_tier_plus_promo_stacking(self, client):
"""Test that tier and promo discounts stack"""
response = client.post('/api/discounts', json={
'price': 100,
'user_tier': 'gold', # 15%
'promo_code': 'SAVE20' # 20%
})
data = response.get_json()
assert data['discount_percent'] == 35 # 15 + 20
assert data['final_price'] == 65
def test_invalid_price_zero(self, client):
"""Test error handling for zero price"""
response = client.post('/api/discounts', json={
'price': 0,
'user_tier': 'gold'
})
assert response.status_code == 400
assert 'error' in response.get_json()
def test_invalid_price_negative(self, client):
"""Test error handling for negative price"""
response = client.post('/api/discounts', json={
'price': -50,
'user_tier': 'gold'
})
assert response.status_code == 400
def test_missing_price(self, client):
"""Test error when price not provided"""
response = client.post('/api/discounts', json={
'user_tier': 'gold'
})
assert response.status_code == 400
def test_invalid_promo_code(self, client):
"""Test that invalid promo codes are ignored"""
response = client.post('/api/discounts', json={
'price': 100,
'user_tier': 'silver',
'promo_code': 'INVALID'
})
data = response.get_json()
# Should only apply tier discount (10%)
assert data['discount_percent'] == 10
def test_large_price(self, client):
"""Test with large price values"""
response = client.post('/api/discounts', json={
'price': 999999.99,
'user_tier': 'gold',
'promo_code': 'SAVE20'
})
assert response.status_code == 200
data = response.get_json()
# 35% off 999999.99
expected = 999999.99 * 0.65
assert abs(data['final_price'] - expected) < 0.01
Coverage: 95%+ with all edge cases
Practice Exerciseβ
Generate tests for a function you wrote recently.
Day 6: Advanced Prompting Techniquesβ
Technique 1: Chain of Thoughtβ
Ask ChatGPT to explain its reasoning:
[Your coding question]
Please think step-by-step:
1. Analyze the requirements
2. Consider edge cases
3. Choose the best approach
4. Implement the solution
5. Explain trade-offs
Example:
Design a rate limiting system for an API.
Think step-by-step about:
1. Different rate limiting algorithms
2. Where to store rate limit data
3. Edge cases (distributed systems, clock skew)
4. Implementation approach
5. Trade-offs of each decision
Technique 2: Iterative Refinementβ
[Initial request]
# After seeing output:
"Great! Now improve it by [specific change]"
# Then:
"Add [feature]"
# Then:
"Optimize for [goal]"
Technique 3: Role-Based Promptingβ
Act as a senior [role] with 10 years experience.
Review this code and provide:
- What a junior would miss
- Best practices specific to [domain]
- Production readiness checklist
Code:
[paste code]
Example:
Act as a senior DevOps engineer.
Review this Dockerfile and provide:
- Security issues
- Performance optimizations
- Production readiness checklist
Dockerfile:
FROM python:latest
COPY . /app
WORKDIR /app
RUN pip install -r requirements.txt
CMD python app.py
ChatGPT (as DevOps expert):
# Issues found:
1. SECURITY: Using 'latest' tag (unpredictable)
2. SECURITY: Running as root (default)
3. PERFORMANCE: Installing all deps every build (no caching)
4. PERFORMANCE: Large image size (python:latest ~900MB)
5. RELIABILITY: No health check
6. DEBUGGING: No logging configuration
# Improved Dockerfile:
FROM python:3.11-slim as builder # β
Specific version, smaller base
# Create non-root user
RUN useradd -m -u 1000 appuser
# Install dependencies (cached layer)
WORKDIR /app
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
# Copy app code
COPY --chown=appuser:appuser . .
# Switch to non-root user
USER appuser
# Health check
HEALTHCHECK --interval=30s --timeout=3s \
CMD python -c "import requests; requests.get('http://localhost:8000/health')"
# Expose port
EXPOSE 8000
# Run app
CMD ["gunicorn", "-w", "4", "-b", "0.0.0.0:8000", "app:app"]
# Production checklist:
# β
Specific base image version
# β
Non-root user
# β
Dependency caching
# β
Small image size (~150MB vs 900MB)
# β
Health check
# β
Production WSGI server (gunicorn)
# β
Proper logging (gunicorn logs to stdout)
Day 7: Building Your Workflowβ
Create Your Prompt Libraryβ
Save effective prompts for reuse:
# prompts.md
## Code Review
Act as a senior developer. Review this [language] code for:
1. Bugs and logic errors
2. Performance issues
3. Security vulnerabilities
4. Code style and readability
5. Missing edge cases
Provide specific line numbers and fixes.
---
## Documentation
Generate comprehensive documentation for this code:
- Purpose and overview
- Parameters with types
- Return values
- Usage examples
- Edge cases and error handling
Format: [JSDoc/docstring/etc]
---
## Refactoring
Refactor this code following [framework] best practices:
- Improve readability
- Reduce complexity
- Optimize performance
- Add proper types
- Follow [style guide]
Explain each major change.
Keyboard Shortcuts / IDE Integrationβ
VS Code Extension: ChatGPT - Genie AI
- Select code β Right click β "Ask ChatGPT"
- Keyboard shortcut:
Ctrl+Shift+G
Command Line:
# Create alias
alias askgpt='function _ask(){ curl -X POST https://api.openai.com/v1/chat/completions -H "Content-Type: application/json" -H "Authorization: Bearer $OPENAI_API_KEY" -d "{\"model\":\"gpt-4\",\"messages\":[{\"role\":\"user\",\"content\":\"$1\"}]}" | jq -r ".choices[0].message.content"; }; _ask'
# Usage
askgpt "Explain this regex: ^[\w\.-]+@[\w\.-]+\.\w+$"
Daily Workflow Integrationβ
Morning:
- Review overnight errors with ChatGPT
- Plan day's tasks (architecture questions)
During Coding:
- Generate boilerplate
- Debug errors as they occur
- Explain unfamiliar code
Before Commit:
- Generate tests
- Write commit message
- Review changes
Code Review:
- Get AI review before human review
- Explain complex changes for PR description
π‘ Pro Tipsβ
1. Always Verify AI Codeβ
# Don't trust blindly!
# β Bad: Copy-paste without reading
# β
Good: Read, understand, test
ai_generated_code = get_from_chatgpt()
# Read it
understand(ai_generated_code)
# Test it
run_tests(ai_generated_code)
# Review for security
check_security(ai_generated_code)
# Then use it
2. Use ChatGPT to Learn, Not Just Get Answersβ
# β Bad: "Fix my code"
# β
Good: "Explain why this doesn't work and teach me the concept"
3. Combine with Documentationβ
# Best workflow:
1. Read official docs (15 min)
2. Ask ChatGPT for clarification (5 min)
3. Try implementation (20 min)
4. Debug with ChatGPT if needed (10 min)
Total: 50 min to learn new concept
4. Track Cost (GPT-4)β
# If using API
import openai
def count_tokens(text):
# Approximate: 1 token β 4 characters
return len(text) // 4
prompt = "Your prompt here"
tokens = count_tokens(prompt)
cost = tokens * $0.03 / 1000 # GPT-4 pricing
print(f"Estimated cost: ${cost:.4f}")
β οΈ Common Pitfallsβ
1. Hallucinated Functionsβ
ChatGPT might invent functions that don't exist:
# ChatGPT might suggest:
result = pandas.magic_function(df) # β Doesn't exist!
# Always verify in docs
2. Outdated Informationβ
Training data cutoff (Jan 2024 for GPT-4):
# β ChatGPT doesn't know about:
- Libraries released after 2024
- Latest API changes
- Recent security vulnerabilities
# β
Solution: Provide documentation in prompt
3. Over-Engineeringβ
ChatGPT tends to suggest complex solutions:
# You asked: "Store user preferences"
# ChatGPT suggests: Redis + RabbitMQ + Kafka + Microservices
# Reality: JSON file is fine for your use case
# Always question: "Is this complexity necessary?"
π Measuring Your Progressβ
After 7 days, you should be able to:
| Task | Before | After | Improvement |
|---|---|---|---|
| Debugging time | 30 min/bug | 10 min/bug | 3x faster |
| Learning new library | 4 hours | 1 hour | 4x faster |
| Writing tests | 2x code time | 0.5x code time | 4x faster |
| Code reviews | 45 min | 15 min | 3x faster |
ROI Calculation:
- Time saved: ~2 hours/day
- Cost: Free or $20/month
- Value: Priceless (learn faster, ship faster)
π Next Stepsβ
Week 2: Advanced techniques
- Combine ChatGPT with other tools (Copilot, Cursor)
- Build custom GPTs for your stack
- Automate repetitive tasks
Month 2: Team adoption
- Share prompt library with team
- Establish best practices
- Measure team productivity gains
Quarter 1: Master AI-assisted development
- Build entire features with AI assistance
- Teach junior developers using AI
- Contribute to open source faster
π Resourcesβ
- OpenAI Playground - Test prompts
- ChatGPT - Start coding
- Prompt Engineering Guide - Learn more
- Our Prompt Library - Ready-to-use prompts
Last Updated: 2025-11-09 | Difficulty: Beginner to Advanced | Time: 7 days
Want to explore other AI coding tools? Check our Complete Comparison Guide.