DeepSeek 开发者教程:免费的 GPT-4 级别编程助手
完全免费获得 GPT-4 质量的编程辅助 - 特别适合学生、竞赛程序员和预算有限的开发者。
🎯 为什么选择 DeepSeek?
最好的免费选择:
- ✅ 100% 免费 - 没有付费版本,使用无限制
- ✅ GPT-4 级别质量 - 在编码任务上与 ChatGPT Plus 相当
- ✅ 中国无需 VPN - 直接可用,优化的服务器
- ✅ 算法能力强 - 擅长 LeetCode、竞赛编程
- ✅ 双语支持 - 中文和英文
特别适合:
- 🎓 学习编程的学生
- 💪 竞赛程序员
- 🚀 中国的开发者
- 💰 预算有限的任何人
- 📚 算法练习
🎬 快速演示(30 秒)
视频即将推出
📹 演示视频制作中 - 预计发布时间:2025-11-17 周
视频将展示:
- DeepSeek 解决 LeetCode Hard 问题
- 算法讲解与时间复杂度分析
- 多语言代码生成
- 与 ChatGPT 在编码任务上的对比
你将在 30 秒内看到:
- DeepSeek 解决竞赛编程挑战
- 逐步的算法分解
- 代码优化建议
- 为什么 DeepSeek 在数学/算法任务上表现出色
视频发布时将提供完整文字记录
🚀 快速入门(5 分钟)
步骤 1:注册
无需手机验证(与某些地区的 ChatGPT 不同)
步骤 2:你的第一个提示词
Solve this problem in Python:
Given an array of integers, return indices of two numbers
that add up to a specific target.
Requirements:
- O(n) time complexity
- Include explanation of approach
- Add test cases
- Chinese comments for key parts
DeepSeek 回复:
def twoSum(nums: list[int], target: int) -> list[int]:
"""
找到数组中两个数的索引,使它们的和等于目标值
Find indices of two numbers that sum to target
时间复杂度: O(n) - 一次遍历
空间复杂度: O(n) - 哈希表存储
"""
# 哈希表存储已遍历的数字和索引
# Hash map to store numbers and their indices
seen = {}
for i, num in enumerate(nums):
# 计算需要的补数
# Calculate the complement
complement = target - num
# 如果补数在哈希表中,返回结果
# If complement exists in hash map, return result
if complement in seen:
return [seen[complement], i]
# 否则,将当前数字加入哈希表
# Otherwise, add current number to hash map
seen[num] = i
# 如果没找到,返回空列表
# Return empty list if no solution found
return []
# 测试用例 / Test Cases
assert twoSum([2, 7, 11, 15], 9) == [0, 1] # 2 + 7 = 9
assert twoSum([3, 2, 4], 6) == [1, 2] # 2 + 4 = 6
assert twoSum([3, 3], 6) == [0, 1] # 3 + 3 = 6
print("所有测试通过!/ All tests passed!")
关键特性:
- ✅ 双语注释(英文 + 中文)
- ✅ 最优 O(n) 解决方案
- ✅ 清晰的解释
- ✅ 包含测试用例
💻 主要应用场景
1. LeetCode / 竞赛编程
DeepSeek 的强项: 算法和数据结构
提示词模式:
LeetCode [Difficulty] Problem:
[问题描述]
Please provide:
1. Multiple approaches (brute force → optimal)
2. Time/space complexity analysis
3. Python implementation with Chinese comments
4. Edge cases to consider
5. Similar problems for practice
示例:合并 K 个排序链表(LeetCode Hard)
LeetCode Hard Problem:
You are given an array of k linked-lists, each sorted in
ascending order. Merge all linked-lists into one sorted list.
Provide:
1. Different approaches
2. Optimal solution (heap-based)
3. Complete code with bilingual comments
4. Complexity analysis
DeepSeek 给出 3 种解决方案:
from typing import List, Optional
import heapq
class ListNode:
def __init__(self, val=0, next=None):
self.val = val
self.next = next
# 方法1: 暴力法 / Approach 1: Brute Force
# 时间: O(N log N), 空间: O(N)
def mergeKLists_bruteforce(lists: List[Optional[ListNode]]) -> Optional[ListNode]:
"""
思路: 收集所有值,排序后重建链表
Idea: Collect all values, sort, rebuild list
"""
nodes = []
# 收集所有节点值
for head in lists:
while head:
nodes.append(head.val)
head = head.next
if not nodes:
return None
# 排序
nodes.sort()
# 重建链表
dummy = ListNode(0)
current = dummy
for val in nodes:
current.next = ListNode(val)
current = current.next
return dummy.next
# 方法2: 分治法 / Approach 2: Divide and Conquer
# 时间: O(N log k), 空间: O(log k) 递归栈
def mergeKLists_divide_conquer(lists: List[Optional[ListNode]]) -> Optional[ListNode]:
"""
思路: 两两合并,类似归并排序
Idea: Merge pairs, similar to merge sort
"""
if not lists:
return None
def merge2Lists(l1, l2):
"""合并两个有序链表"""
dummy = ListNode(0)
current = dummy
while l1 and l2:
if l1.val < l2.val:
current.next = l1
l1 = l1.next
else:
current.next = l2
l2 = l2.next
current = current.next
current.next = l1 or l2
return dummy.next
# 分治合并
while len(lists) > 1:
merged = []
for i in range(0, len(lists), 2):
l1 = lists[i]
l2 = lists[i + 1] if i + 1 < len(lists) else None
merged.append(merge2Lists(l1, l2))
lists = merged
return lists[0] if lists else None
# 方法3: 最小堆 (最优) / Approach 3: Min Heap (Optimal)
# 时间: O(N log k), 空间: O(k)
def mergeKLists(lists: List[Optional[ListNode]]) -> Optional[ListNode]:
"""
思路: 使用最小堆维护k个链表的当前最小值
Idea: Use min heap to maintain current minimum among k lists
为什么最优:
- 每次只需要比较k个元素 (堆顶)
- 插入/删除堆操作 O(log k)
- 总共N个节点,每个插入/删除一次
- 总时间: O(N log k)
Why optimal:
- Only compare k elements (heap top) each time
- Heap insert/delete: O(log k)
- N total nodes, each inserted/deleted once
- Total time: O(N log k)
"""
heap = []
# 初始化堆: 将每个链表的第一个节点加入
# Initialize heap with first node from each list
for i, head in enumerate(lists):
if head:
# (value, list_index, node)
heapq.heappush(heap, (head.val, i, head))
# 哨兵节点简化链表操作
# Dummy node to simplify list operations
dummy = ListNode(0)
current = dummy
# 持续从堆中取最小值
# Continuously extract minimum from heap
while heap:
val, i, node = heapq.heappop(heap)
# 将节点添加到结果链表
# Add node to result list
current.next = node
current = current.next
# 如果该链表还有下一个节点,加入堆
# If list has next node, add to heap
if node.next:
heapq.heappush(heap, (node.next.val, i, node.next))
return dummy.next
# 复杂度对比 / Complexity Comparison
"""
方法1 - 暴力法:
时间: O(N log N) - N个元素排序
空间: O(N) - 存储所有值
优点: 简单易懂
缺点: 时间复杂度较高
方法2 - 分治法:
时间: O(N log k) - log k层,每层N次操作
空间: O(log k) - 递归栈
优点: 时间复杂度优
缺点: 递归实现较复杂
方法3 - 最小堆 (推荐):
时间: O(N log k) - N次插入,每次log k
空间: O(k) - 堆大小
优点: 时间空间都优,代码清晰
缺点: 需要理解堆的概念
Approach 1 - Brute Force:
Time: O(N log N) - sort N elements
Space: O(N) - store all values
Pros: Simple to understand
Cons: Higher time complexity
Approach 2 - Divide & Conquer:
Time: O(N log k) - log k levels, N ops per level
Space: O(log k) - recursion stack
Pros: Optimal time complexity
Cons: Complex recursive implementation
Approach 3 - Min Heap (Recommended):
Time: O(N log k) - N insertions, log k each
Space: O(k) - heap size
Pros: Optimal time/space, clean code
Cons: Requires understanding of heaps
"""
# 相似问题 / Similar Problems
"""
1. Merge Two Sorted Lists (Easy) - 基础版
2. Sort List (Medium) - 链表排序
3. Find K Pairs with Smallest Sums (Medium) - 相似思路
4. Ugly Number II (Medium) - 多路归并
1. Merge Two Sorted Lists (Easy) - Foundation
2. Sort List (Medium) - Linked list sorting
3. Find K Pairs with Smallest Sums (Medium) - Similar approach
4. Ugly Number II (Medium) - Multi-way merge
"""
DeepSeek 优势: 展示所有方法,而不仅仅是一种解决方案
2. 学习算法
模式:
Explain [Algorithm/Data Structure] with:
1. When to use it
2. Time/space complexity
3. Python implementation
4. Real-world example
5. Common mistakes
示例:
Explain Binary Search Tree (BST) with:
- When to use vs array/hash map
- All operations (insert, search, delete)
- Python implementation
- Real-world use cases
- Common pitfalls
DeepSeek 提供包含图表(文本形式)、代码和示例的综合教程。
3. 代码优化
模式:
Optimize this code for [metric]:
[粘贴代码]
Analyze:
1. Current complexity
2. Bottlenecks
3. Optimized approach
4. Trade-offs
示例:
# Original: Slow for large lists
def find_duplicates(nums):
duplicates = []
for i in range(len(nums)):
for j in range(i + 1, len(nums)):
if nums[i] == nums[j] and nums[i] not in duplicates:
duplicates.append(nums[i])
return duplicates
# Prompt to DeepSeek:
"""
Optimize this duplicate finder:
[code above]
Current time complexity: O(n²)
Target: O(n)
Explain optimization approach with bilingual comments.
"""
DeepSeek 回复:
def find_duplicates(nums):
"""
优化方案: 使用集合追踪已见数字
Optimization: Use sets to track seen numbers
原始复杂度: O(n²) - 双重循环
优化后复杂度: O(n) - 一次遍历
Original: O(n²) - nested loops
Optimized: O(n) - single pass
"""
seen = set() # 已见过的数字
duplicates = set() # 重复的数字
for num in nums:
if num in seen:
# 如果已见过,说明是重复
# If seen before, it's a duplicate
duplicates.add(num)
else:
# 否则,加入已见集合
# Otherwise, add to seen set
seen.add(num)
return list(duplicates)
# 性能对比 / Performance Comparison
"""
输入大小 / Input Size: n = 10,000
原始方法 / Original:
- 时间: ~5 seconds
- 空间: O(n) (结果列表)
- 操作次数: ~50,000,000 次比较
优化方法 / Optimized:
- 时间: ~0.001 seconds (5000x faster!)
- 空间: O(n) (两个集合)
- 操作次数: ~10,000 次查找
关键优化 / Key Optimization:
集合查找 O(1) vs 列表遍历 O(n)
Set lookup O(1) vs List iteration O(n)
"""
# 测试
import time
large_list = list(range(5000)) * 2 # 10,000 elements, each appears twice
# Original (would take ~5 seconds, commented out)
# start = time.time()
# result1 = find_duplicates_slow(large_list)
# print(f"Original: {time.time() - start:.3f}s")
# Optimized
start = time.time()
result2 = find_duplicates(large_list)
print(f"Optimized: {time.time() - start:.6f}s") # ~0.001s
🎓 学习指南:30 天算法掌握
使用 DeepSeek 免费掌握算法:
第 1 周:数组和字符串
每日模式:
Day 1: Two Pointers technique
- Explain with examples
- Solve 3 problems
- Bilingual comments
Day 2: Sliding Window
[same pattern]
DeepSeek 提示词:
I want to master Two Pointers technique.
Provide:
1. Concept explanation (简单易懂)
2. When to use vs other approaches
3. Template code pattern
4. 3 problems (Easy → Medium → Hard)
5. Complete solutions with Chinese comments
第 2 周:哈希表和集合
第 3 周:栈和队列
第 4 周:树和图
在 DeepSeek 中跟踪进度:
I'm on Day 15 of algorithm study (Trees topic).
Yesterday I learned:
- Binary tree traversal (preorder, inorder, postorder)
- Solved 3 problems
Today's goal:
- Learn BST operations
- Solve 2 BST problems
Guide my study session:
1. Quick review of yesterday
2. Today's new concept (BST)
3. 2 practice problems
4. Summary and tomorrow's preview
💡 DeepSeek 最佳实践
1. 利用双语优势
# ✅ 好:请求双语输出
"Solve with Chinese comments for key logic, English for general"
# This helps:
# - 中文使用者理解更快
# - 学习英文技术术语
# - 良好的文档实践
2. 要求多种解决方案
# ✅ DeepSeek 擅长展示替代方案
"Provide 3 approaches:
1. Brute force (for understanding)
2. Optimized (for interviews)
3. Most Pythonic (for production)
Compare time/space complexity."
3. 用于面试准备
# ✅ 模拟面试格式
"Act as a Google interviewer.
Problem: [LeetCode problem]
After I submit solution:
1. Ask follow-up questions
2. Request optimization
3. Test edge cases
4. Rate my performance (1-10)
I'll respond with my code."
示例会话:
You: [Submit solution]
DeepSeek (as interviewer):
"Good start! Your solution works. Follow-ups:
1. What's the time complexity? Can you prove it?
2. How would you handle if input array is sorted?
3. What if we need to find 3 numbers that sum to target?
4. Any edge cases you might have missed?
Your solution rating: 7/10
- ✅ Correct logic
- ✅ Clean code
- ⚠️ Can optimize space from O(n) to O(1)
- ⚠️ Didn't mention edge case: empty array
Want to try optimizing?"
🆚 DeepSeek vs 付费替代品
| 功能 | DeepSeek | ChatGPT Plus | Claude Pro |
|---|---|---|---|
| 价格 | 免费 | $20/月 | $20/月 |
| 算法质量 | ⭐⭐⭐⭐⭐ | ⭐⭐⭐⭐ | ⭐⭐⭐⭐ |
| 代码生成 | ⭐⭐⭐⭐ | ⭐⭐⭐⭐⭐ | ⭐⭐⭐⭐⭐ |
| 双语支持 | ⭐⭐⭐⭐⭐ | ⭐⭐⭐ | ⭐⭐⭐ |
| 无需 VPN(中国) | ✅ | ❌ | ❌ |
| 速度 | 中等 | 快 | 快 |
| 使用限制 | 无 | 高限制 | 高限制 |
结论:
- 对于算法/LeetCode: DeepSeek = ChatGPT Plus(相同质量,免费!)
- 对于通用编码: ChatGPT Plus 略好
- 对于中国开发者: DeepSeek 是明显的选择
🚀 高级技巧
1. 链接复杂问题
# 将困难问题分解为步骤
Step 1:
"Explain the sliding window technique for this problem:
[problem description]"
Step 2:
"Now show me the code structure (pseudocode)"
Step 3:
"Implement in Python with full comments"
Step 4:
"Add 5 test cases covering edge cases"
Step 5:
"Optimize for space complexity"
2. 通过教学学习
"I'll explain my understanding of [concept].
You act as a teacher and correct any misconceptions.
My explanation:
[your understanding]
Please:
1. Point out what's correct
2. Clarify misconceptions
3. Fill in gaps
4. Provide better mental model"
3. 模式识别
"I've solved these 3 problems:
1. [Problem A]
2. [Problem B]
3. [Problem C]
What common pattern do they share?
Teach me the pattern so I can solve similar problems."
📊 成功指标
使用 DeepSeek 30 天后:
| 指标 | 之前 | 之后 |
|---|---|---|
| LeetCode 解决数 | 50 | 200+ |
| 解题速度 | 45 分钟/题 | 15 分钟/题 |
| 算法理解 | 基础 | 扎实 |
| 面试信心 | 5/10 | 8/10 |
| 花费 | $0 | $0(仍然免费!) |
学生评价:
"每天使用 DeepSeek 刷 LeetCode 3 个月后通过了 Google 面试。省下了 $60,因为不用付费购买 ChatGPT Plus。" - Chen,软件工程师
"DeepSeek 的双语注释帮助我更快地学习英文技术术语和算法。现在我在英语团队中工作很自在。" - 李明,全栈开发者
⚠️ 局限性
DeepSeek 不擅长的领域
-
实时代码补全
- 使用:Cursor、Copilot 代替
- DeepSeek 是基于聊天的,未集成到 IDE
-
大型代码库分析
- 更好的选择:Kimi K2(200 万 token 上下文)
- DeepSeek:约 64K 上下文限制
-
前沿框架
- DeepSeek 知识截止日期:2024 年中
- 可能不了解之后发布的库
-
生产 DevOps
- 足够但不专业
- 考虑使用 Claude 用于生产系统
何时升级到付费版本
如果以下情况,考虑 ChatGPT Plus / Claude:
- ✅ 你需要最新的框架知识
- ✅ 你做生产系统设计
- ✅ 你需要更快的响应
- ✅ 你想要 IDE 集成
但对于算法/学习: DeepSeek 完美(且免费!)
🔗 资源
官方:
- DeepSeek Chat - 从这里开始
- DeepSeek API - 面向开发者
- Documentation - API 文档
社区:
- DeepSeek Discord - 用户社区
- Reddit r/DeepSeek - 技巧和窍门
学习:
- LeetCode - 练习题目
- Codeforces - 竞赛编程
- 算法模板 - 算法模式(中文)
📝 快速参考
必备提示词
# 算法学习
"Explain [algorithm] with bilingual comments, multiple approaches, and complexity analysis"
# 问题解决
"Solve [problem] with: 1) Approach explanation, 2) Code with comments, 3) Test cases, 4) Complexity analysis"
# 代码审查
"Review this code for: 1) Correctness, 2) Optimization opportunities, 3) Edge cases, 4) Best practices"
# 面试准备
"Act as interviewer. Problem: [X]. After my solution, give feedback and follow-ups."
# 调试
"This code has a bug: [code]. Error: [error]. Explain what's wrong and fix it."
最后更新: 2025-11-09 | 难度: 所有级别 | 费用: 免费
在我们的 AI 编码工具对比 中比较 DeepSeek 与其他工具。