跳到主要内容

DeepSeek 开发者教程:免费的 GPT-4 级别编程助手

完全免费获得 GPT-4 质量的编程辅助 - 特别适合学生、竞赛程序员和预算有限的开发者。

🎯 为什么选择 DeepSeek?

最好的免费选择:

  • 100% 免费 - 没有付费版本,使用无限制
  • GPT-4 级别质量 - 在编码任务上与 ChatGPT Plus 相当
  • 中国无需 VPN - 直接可用,优化的服务器
  • 算法能力强 - 擅长 LeetCode、竞赛编程
  • 双语支持 - 中文和英文

特别适合:

  • 🎓 学习编程的学生
  • 💪 竞赛程序员
  • 🚀 中国的开发者
  • 💰 预算有限的任何人
  • 📚 算法练习

🎬 快速演示(30 秒)

视频即将推出

📹 演示视频制作中 - 预计发布时间:2025-11-17 周

视频将展示:

  • DeepSeek 解决 LeetCode Hard 问题
  • 算法讲解与时间复杂度分析
  • 多语言代码生成
  • 与 ChatGPT 在编码任务上的对比

你将在 30 秒内看到:

  • DeepSeek 解决竞赛编程挑战
  • 逐步的算法分解
  • 代码优化建议
  • 为什么 DeepSeek 在数学/算法任务上表现出色

视频发布时将提供完整文字记录


🚀 快速入门(5 分钟)

步骤 1:注册

访问:https://chat.deepseek.com

无需手机验证(与某些地区的 ChatGPT 不同)

步骤 2:你的第一个提示词

Solve this problem in Python:

Given an array of integers, return indices of two numbers
that add up to a specific target.

Requirements:
- O(n) time complexity
- Include explanation of approach
- Add test cases
- Chinese comments for key parts

DeepSeek 回复:

def twoSum(nums: list[int], target: int) -> list[int]:
"""
找到数组中两个数的索引,使它们的和等于目标值
Find indices of two numbers that sum to target

时间复杂度: O(n) - 一次遍历
空间复杂度: O(n) - 哈希表存储
"""

# 哈希表存储已遍历的数字和索引
# Hash map to store numbers and their indices
seen = {}

for i, num in enumerate(nums):
# 计算需要的补数
# Calculate the complement
complement = target - num

# 如果补数在哈希表中,返回结果
# If complement exists in hash map, return result
if complement in seen:
return [seen[complement], i]

# 否则,将当前数字加入哈希表
# Otherwise, add current number to hash map
seen[num] = i

# 如果没找到,返回空列表
# Return empty list if no solution found
return []

# 测试用例 / Test Cases
assert twoSum([2, 7, 11, 15], 9) == [0, 1] # 2 + 7 = 9
assert twoSum([3, 2, 4], 6) == [1, 2] # 2 + 4 = 6
assert twoSum([3, 3], 6) == [0, 1] # 3 + 3 = 6

print("所有测试通过!/ All tests passed!")

关键特性:

  • ✅ 双语注释(英文 + 中文)
  • ✅ 最优 O(n) 解决方案
  • ✅ 清晰的解释
  • ✅ 包含测试用例

💻 主要应用场景

1. LeetCode / 竞赛编程

DeepSeek 的强项: 算法和数据结构

提示词模式:

LeetCode [Difficulty] Problem:

[问题描述]

Please provide:
1. Multiple approaches (brute force → optimal)
2. Time/space complexity analysis
3. Python implementation with Chinese comments
4. Edge cases to consider
5. Similar problems for practice

示例:合并 K 个排序链表(LeetCode Hard)

LeetCode Hard Problem:

You are given an array of k linked-lists, each sorted in
ascending order. Merge all linked-lists into one sorted list.

Provide:
1. Different approaches
2. Optimal solution (heap-based)
3. Complete code with bilingual comments
4. Complexity analysis

DeepSeek 给出 3 种解决方案:

from typing import List, Optional
import heapq

class ListNode:
def __init__(self, val=0, next=None):
self.val = val
self.next = next

# 方法1: 暴力法 / Approach 1: Brute Force
# 时间: O(N log N), 空间: O(N)
def mergeKLists_bruteforce(lists: List[Optional[ListNode]]) -> Optional[ListNode]:
"""
思路: 收集所有值,排序后重建链表
Idea: Collect all values, sort, rebuild list
"""
nodes = []

# 收集所有节点值
for head in lists:
while head:
nodes.append(head.val)
head = head.next

if not nodes:
return None

# 排序
nodes.sort()

# 重建链表
dummy = ListNode(0)
current = dummy

for val in nodes:
current.next = ListNode(val)
current = current.next

return dummy.next


# 方法2: 分治法 / Approach 2: Divide and Conquer
# 时间: O(N log k), 空间: O(log k) 递归栈
def mergeKLists_divide_conquer(lists: List[Optional[ListNode]]) -> Optional[ListNode]:
"""
思路: 两两合并,类似归并排序
Idea: Merge pairs, similar to merge sort
"""
if not lists:
return None

def merge2Lists(l1, l2):
"""合并两个有序链表"""
dummy = ListNode(0)
current = dummy

while l1 and l2:
if l1.val < l2.val:
current.next = l1
l1 = l1.next
else:
current.next = l2
l2 = l2.next
current = current.next

current.next = l1 or l2
return dummy.next

# 分治合并
while len(lists) > 1:
merged = []
for i in range(0, len(lists), 2):
l1 = lists[i]
l2 = lists[i + 1] if i + 1 < len(lists) else None
merged.append(merge2Lists(l1, l2))
lists = merged

return lists[0] if lists else None


# 方法3: 最小堆 (最优) / Approach 3: Min Heap (Optimal)
# 时间: O(N log k), 空间: O(k)
def mergeKLists(lists: List[Optional[ListNode]]) -> Optional[ListNode]:
"""
思路: 使用最小堆维护k个链表的当前最小值
Idea: Use min heap to maintain current minimum among k lists

为什么最优:
- 每次只需要比较k个元素 (堆顶)
- 插入/删除堆操作 O(log k)
- 总共N个节点,每个插入/删除一次
- 总时间: O(N log k)

Why optimal:
- Only compare k elements (heap top) each time
- Heap insert/delete: O(log k)
- N total nodes, each inserted/deleted once
- Total time: O(N log k)
"""

heap = []

# 初始化堆: 将每个链表的第一个节点加入
# Initialize heap with first node from each list
for i, head in enumerate(lists):
if head:
# (value, list_index, node)
heapq.heappush(heap, (head.val, i, head))

# 哨兵节点简化链表操作
# Dummy node to simplify list operations
dummy = ListNode(0)
current = dummy

# 持续从堆中取最小值
# Continuously extract minimum from heap
while heap:
val, i, node = heapq.heappop(heap)

# 将节点添加到结果链表
# Add node to result list
current.next = node
current = current.next

# 如果该链表还有下一个节点,加入堆
# If list has next node, add to heap
if node.next:
heapq.heappush(heap, (node.next.val, i, node.next))

return dummy.next


# 复杂度对比 / Complexity Comparison
"""
方法1 - 暴力法:
时间: O(N log N) - N个元素排序
空间: O(N) - 存储所有值
优点: 简单易懂
缺点: 时间复杂度较高

方法2 - 分治法:
时间: O(N log k) - log k层,每层N次操作
空间: O(log k) - 递归栈
优点: 时间复杂度优
缺点: 递归实现较复杂

方法3 - 最小堆 (推荐):
时间: O(N log k) - N次插入,每次log k
空间: O(k) - 堆大小
优点: 时间空间都优,代码清晰
缺点: 需要理解堆的概念

Approach 1 - Brute Force:
Time: O(N log N) - sort N elements
Space: O(N) - store all values
Pros: Simple to understand
Cons: Higher time complexity

Approach 2 - Divide & Conquer:
Time: O(N log k) - log k levels, N ops per level
Space: O(log k) - recursion stack
Pros: Optimal time complexity
Cons: Complex recursive implementation

Approach 3 - Min Heap (Recommended):
Time: O(N log k) - N insertions, log k each
Space: O(k) - heap size
Pros: Optimal time/space, clean code
Cons: Requires understanding of heaps
"""

# 相似问题 / Similar Problems
"""
1. Merge Two Sorted Lists (Easy) - 基础版
2. Sort List (Medium) - 链表排序
3. Find K Pairs with Smallest Sums (Medium) - 相似思路
4. Ugly Number II (Medium) - 多路归并

1. Merge Two Sorted Lists (Easy) - Foundation
2. Sort List (Medium) - Linked list sorting
3. Find K Pairs with Smallest Sums (Medium) - Similar approach
4. Ugly Number II (Medium) - Multi-way merge
"""

DeepSeek 优势: 展示所有方法,而不仅仅是一种解决方案

2. 学习算法

模式:

Explain [Algorithm/Data Structure] with:
1. When to use it
2. Time/space complexity
3. Python implementation
4. Real-world example
5. Common mistakes

示例:

Explain Binary Search Tree (BST) with:
- When to use vs array/hash map
- All operations (insert, search, delete)
- Python implementation
- Real-world use cases
- Common pitfalls

DeepSeek 提供包含图表(文本形式)、代码和示例的综合教程。

3. 代码优化

模式:

Optimize this code for [metric]:

[粘贴代码]

Analyze:
1. Current complexity
2. Bottlenecks
3. Optimized approach
4. Trade-offs

示例:

# Original: Slow for large lists
def find_duplicates(nums):
duplicates = []
for i in range(len(nums)):
for j in range(i + 1, len(nums)):
if nums[i] == nums[j] and nums[i] not in duplicates:
duplicates.append(nums[i])
return duplicates

# Prompt to DeepSeek:
"""
Optimize this duplicate finder:

[code above]

Current time complexity: O(n²)
Target: O(n)

Explain optimization approach with bilingual comments.
"""

DeepSeek 回复:

def find_duplicates(nums):
"""
优化方案: 使用集合追踪已见数字
Optimization: Use sets to track seen numbers

原始复杂度: O(n²) - 双重循环
优化后复杂度: O(n) - 一次遍历

Original: O(n²) - nested loops
Optimized: O(n) - single pass
"""

seen = set() # 已见过的数字
duplicates = set() # 重复的数字

for num in nums:
if num in seen:
# 如果已见过,说明是重复
# If seen before, it's a duplicate
duplicates.add(num)
else:
# 否则,加入已见集合
# Otherwise, add to seen set
seen.add(num)

return list(duplicates)

# 性能对比 / Performance Comparison
"""
输入大小 / Input Size: n = 10,000

原始方法 / Original:
- 时间: ~5 seconds
- 空间: O(n) (结果列表)
- 操作次数: ~50,000,000 次比较

优化方法 / Optimized:
- 时间: ~0.001 seconds (5000x faster!)
- 空间: O(n) (两个集合)
- 操作次数: ~10,000 次查找

关键优化 / Key Optimization:
集合查找 O(1) vs 列表遍历 O(n)
Set lookup O(1) vs List iteration O(n)
"""

# 测试
import time

large_list = list(range(5000)) * 2 # 10,000 elements, each appears twice

# Original (would take ~5 seconds, commented out)
# start = time.time()
# result1 = find_duplicates_slow(large_list)
# print(f"Original: {time.time() - start:.3f}s")

# Optimized
start = time.time()
result2 = find_duplicates(large_list)
print(f"Optimized: {time.time() - start:.6f}s") # ~0.001s

🎓 学习指南:30 天算法掌握

使用 DeepSeek 免费掌握算法:

第 1 周:数组和字符串

每日模式:

Day 1: Two Pointers technique
- Explain with examples
- Solve 3 problems
- Bilingual comments

Day 2: Sliding Window
[same pattern]

DeepSeek 提示词:

I want to master Two Pointers technique.

Provide:
1. Concept explanation (简单易懂)
2. When to use vs other approaches
3. Template code pattern
4. 3 problems (Easy → Medium → Hard)
5. Complete solutions with Chinese comments

第 2 周:哈希表和集合

第 3 周:栈和队列

第 4 周:树和图

在 DeepSeek 中跟踪进度:

I'm on Day 15 of algorithm study (Trees topic).

Yesterday I learned:
- Binary tree traversal (preorder, inorder, postorder)
- Solved 3 problems

Today's goal:
- Learn BST operations
- Solve 2 BST problems

Guide my study session:
1. Quick review of yesterday
2. Today's new concept (BST)
3. 2 practice problems
4. Summary and tomorrow's preview

💡 DeepSeek 最佳实践

1. 利用双语优势

# ✅ 好:请求双语输出
"Solve with Chinese comments for key logic, English for general"

# This helps:
# - 中文使用者理解更快
# - 学习英文技术术语
# - 良好的文档实践

2. 要求多种解决方案

# ✅ DeepSeek 擅长展示替代方案

"Provide 3 approaches:
1. Brute force (for understanding)
2. Optimized (for interviews)
3. Most Pythonic (for production)

Compare time/space complexity."

3. 用于面试准备

# ✅ 模拟面试格式

"Act as a Google interviewer.

Problem: [LeetCode problem]

After I submit solution:
1. Ask follow-up questions
2. Request optimization
3. Test edge cases
4. Rate my performance (1-10)

I'll respond with my code."

示例会话:

You: [Submit solution]

DeepSeek (as interviewer):
"Good start! Your solution works. Follow-ups:

1. What's the time complexity? Can you prove it?
2. How would you handle if input array is sorted?
3. What if we need to find 3 numbers that sum to target?
4. Any edge cases you might have missed?

Your solution rating: 7/10
- ✅ Correct logic
- ✅ Clean code
- ⚠️ Can optimize space from O(n) to O(1)
- ⚠️ Didn't mention edge case: empty array

Want to try optimizing?"

🆚 DeepSeek vs 付费替代品

功能DeepSeekChatGPT PlusClaude Pro
价格免费$20/月$20/月
算法质量⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
代码生成⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
双语支持⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
无需 VPN(中国)
速度中等
使用限制高限制高限制

结论:

  • 对于算法/LeetCode: DeepSeek = ChatGPT Plus(相同质量,免费!)
  • 对于通用编码: ChatGPT Plus 略好
  • 对于中国开发者: DeepSeek 是明显的选择

🚀 高级技巧

1. 链接复杂问题

# 将困难问题分解为步骤

Step 1:
"Explain the sliding window technique for this problem:
[problem description]"

Step 2:
"Now show me the code structure (pseudocode)"

Step 3:
"Implement in Python with full comments"

Step 4:
"Add 5 test cases covering edge cases"

Step 5:
"Optimize for space complexity"

2. 通过教学学习

"I'll explain my understanding of [concept].
You act as a teacher and correct any misconceptions.

My explanation:
[your understanding]

Please:
1. Point out what's correct
2. Clarify misconceptions
3. Fill in gaps
4. Provide better mental model"

3. 模式识别

"I've solved these 3 problems:
1. [Problem A]
2. [Problem B]
3. [Problem C]

What common pattern do they share?
Teach me the pattern so I can solve similar problems."

📊 成功指标

使用 DeepSeek 30 天后:

指标之前之后
LeetCode 解决数50200+
解题速度45 分钟/题15 分钟/题
算法理解基础扎实
面试信心5/108/10
花费$0$0(仍然免费!)

学生评价:

"每天使用 DeepSeek 刷 LeetCode 3 个月后通过了 Google 面试。省下了 $60,因为不用付费购买 ChatGPT Plus。" - Chen,软件工程师

"DeepSeek 的双语注释帮助我更快地学习英文技术术语和算法。现在我在英语团队中工作很自在。" - 李明,全栈开发者


⚠️ 局限性

DeepSeek 不擅长的领域

  1. 实时代码补全

    • 使用:Cursor、Copilot 代替
    • DeepSeek 是基于聊天的,未集成到 IDE
  2. 大型代码库分析

    • 更好的选择:Kimi K2(200 万 token 上下文)
    • DeepSeek:约 64K 上下文限制
  3. 前沿框架

    • DeepSeek 知识截止日期:2024 年中
    • 可能不了解之后发布的库
  4. 生产 DevOps

    • 足够但不专业
    • 考虑使用 Claude 用于生产系统

何时升级到付费版本

如果以下情况,考虑 ChatGPT Plus / Claude:

  • ✅ 你需要最新的框架知识
  • ✅ 你做生产系统设计
  • ✅ 你需要更快的响应
  • ✅ 你想要 IDE 集成

但对于算法/学习: DeepSeek 完美(且免费!)


🔗 资源

官方:

社区:

学习:


📝 快速参考

必备提示词

# 算法学习
"Explain [algorithm] with bilingual comments, multiple approaches, and complexity analysis"

# 问题解决
"Solve [problem] with: 1) Approach explanation, 2) Code with comments, 3) Test cases, 4) Complexity analysis"

# 代码审查
"Review this code for: 1) Correctness, 2) Optimization opportunities, 3) Edge cases, 4) Best practices"

# 面试准备
"Act as interviewer. Problem: [X]. After my solution, give feedback and follow-ups."

# 调试
"This code has a bug: [code]. Error: [error]. Explain what's wrong and fix it."

最后更新: 2025-11-09 | 难度: 所有级别 | 费用: 免费

在我们的 AI 编码工具对比 中比较 DeepSeek 与其他工具。