Skip to main content

DeepSeek for Developers: Free GPT-4 Level Coding

Get GPT-4 quality coding assistance completely free - Perfect for students, competitive programmers, and budget-conscious developers.

šŸŽÆ Why DeepSeek?​

The Best Free Option:

  • āœ… 100% Free - No paid tiers, no limits on usage
  • āœ… GPT-4 Level Quality - Matches ChatGPT Plus in coding tasks
  • āœ… No VPN in China - Works directly, optimized servers
  • āœ… Strong at Algorithms - Excels at LeetCode, competitive programming
  • āœ… Bilingual - Chinese and English support

Perfect For:

  • šŸŽ“ Students learning to code
  • šŸ’Ŗ Competitive programmers
  • šŸš€ Developers in China
  • šŸ’° Anyone on a budget
  • šŸ“š Algorithm practice

šŸŽ¬ Quick Demo (30 seconds)​

Video Coming Soon

šŸ“¹ Demo video in production - Expected release: Week of 2025-11-17

The video will showcase:

  • DeepSeek solving a LeetCode Hard problem
  • Algorithm explanation with time complexity analysis
  • Code generation in multiple languages
  • Comparison with ChatGPT for coding tasks

What you'll see in 30 seconds:

  • DeepSeek tackling a competitive programming challenge
  • Step-by-step algorithm breakdown
  • Code optimization suggestions
  • Why DeepSeek excels at mathematical/algorithmic tasks

Full transcript will be available on video release


šŸš€ Quick Start (5 Minutes)​

Step 1: Sign Up​

Visit: https://chat.deepseek.com

No phone verification needed (unlike ChatGPT in some regions)

Step 2: Your First Prompt​

Solve this problem in Python:

Given an array of integers, return indices of two numbers
that add up to a specific target.

Requirements:
- O(n) time complexity
- Include explanation of approach
- Add test cases
- Chinese comments for key parts

DeepSeek Response:

def twoSum(nums: list[int], target: int) -> list[int]:
"""
ę‰¾åˆ°ę•°ē»„äø­äø¤äøŖę•°ēš„ē“¢å¼•ļ¼Œä½æå®ƒä»¬ēš„å’Œē­‰äŗŽē›®ę ‡å€¼
Find indices of two numbers that sum to target

ę—¶é—“å¤ę‚åŗ¦: O(n) - äø€ę¬”éåŽ†
ē©ŗé—“å¤ę‚åŗ¦: O(n) - å“ˆåøŒč”Øå­˜å‚Ø
"""

# å“ˆåøŒč”Øå­˜å‚Øå·²éåŽ†ēš„ę•°å­—å’Œē“¢å¼•
# Hash map to store numbers and their indices
seen = {}

for i, num in enumerate(nums):
# č®”ē®—éœ€č¦ēš„č”„ę•°
# Calculate the complement
complement = target - num

# å¦‚ęžœč”„ę•°åœØå“ˆåøŒč”Øäø­ļ¼Œčæ”å›žē»“ęžœ
# If complement exists in hash map, return result
if complement in seen:
return [seen[complement], i]

# å¦åˆ™ļ¼Œå°†å½“å‰ę•°å­—åŠ å…„å“ˆåøŒč”Ø
# Otherwise, add current number to hash map
seen[num] = i

# å¦‚ęžœę²”ę‰¾åˆ°ļ¼Œčæ”å›žē©ŗåˆ—č”Ø
# Return empty list if no solution found
return []

# 测试用例 / Test Cases
assert twoSum([2, 7, 11, 15], 9) == [0, 1] # 2 + 7 = 9
assert twoSum([3, 2, 4], 6) == [1, 2] # 2 + 4 = 6
assert twoSum([3, 3], 6) == [0, 1] # 3 + 3 = 6

print("ę‰€ęœ‰ęµ‹čÆ•é€ščæ‡ļ¼/ All tests passed!")

Key Features:

  • āœ… Bilingual comments (EN + CN)
  • āœ… Optimal O(n) solution
  • āœ… Clear explanation
  • āœ… Test cases included

šŸ’» Main Use Cases​

1. LeetCode / Competitive Programming​

DeepSeek's Strength: Algorithms and data structures

Prompt Pattern:

LeetCode [Difficulty] Problem:

[Problem description]

Please provide:
1. Multiple approaches (brute force → optimal)
2. Time/space complexity analysis
3. Python implementation with Chinese comments
4. Edge cases to consider
5. Similar problems for practice

Example: Merge K Sorted Lists (LeetCode Hard)

LeetCode Hard Problem:

You are given an array of k linked-lists, each sorted in
ascending order. Merge all linked-lists into one sorted list.

Provide:
1. Different approaches
2. Optimal solution (heap-based)
3. Complete code with bilingual comments
4. Complexity analysis

DeepSeek gives 3 solutions:

from typing import List, Optional
import heapq

class ListNode:
def __init__(self, val=0, next=None):
self.val = val
self.next = next

# 方法1: ęš“åŠ›ę³• / Approach 1: Brute Force
# ę—¶é—“: O(N log N), 空闓: O(N)
def mergeKLists_bruteforce(lists: List[Optional[ListNode]]) -> Optional[ListNode]:
"""
ę€č·Æ: ę”¶é›†ę‰€ęœ‰å€¼ļ¼ŒęŽ’åŗåŽé‡å»ŗé“¾č”Ø
Idea: Collect all values, sort, rebuild list
"""
nodes = []

# ę”¶é›†ę‰€ęœ‰čŠ‚ē‚¹å€¼
for head in lists:
while head:
nodes.append(head.val)
head = head.next

if not nodes:
return None

# ęŽ’åŗ
nodes.sort()

# é‡å»ŗé“¾č”Ø
dummy = ListNode(0)
current = dummy

for val in nodes:
current.next = ListNode(val)
current = current.next

return dummy.next


# 方法2: åˆ†ę²»ę³• / Approach 2: Divide and Conquer
# ę—¶é—“: O(N log k), 空闓: O(log k) é€’å½’ę ˆ
def mergeKLists_divide_conquer(lists: List[Optional[ListNode]]) -> Optional[ListNode]:
"""
ę€č·Æ: äø¤äø¤åˆå¹¶ļ¼Œē±»ä¼¼å½’å¹¶ęŽ’åŗ
Idea: Merge pairs, similar to merge sort
"""
if not lists:
return None

def merge2Lists(l1, l2):
"""åˆå¹¶äø¤äøŖęœ‰åŗé“¾č”Ø"""
dummy = ListNode(0)
current = dummy

while l1 and l2:
if l1.val < l2.val:
current.next = l1
l1 = l1.next
else:
current.next = l2
l2 = l2.next
current = current.next

current.next = l1 or l2
return dummy.next

# åˆ†ę²»åˆå¹¶
while len(lists) > 1:
merged = []
for i in range(0, len(lists), 2):
l1 = lists[i]
l2 = lists[i + 1] if i + 1 < len(lists) else None
merged.append(merge2Lists(l1, l2))
lists = merged

return lists[0] if lists else None


# 方法3: ęœ€å°å † (ęœ€ä¼˜) / Approach 3: Min Heap (Optimal)
# ę—¶é—“: O(N log k), 空闓: O(k)
def mergeKLists(lists: List[Optional[ListNode]]) -> Optional[ListNode]:
"""
ę€č·Æ: ä½æē”Øęœ€å°å †ē»“ęŠ¤käøŖé“¾č”Øēš„å½“å‰ęœ€å°å€¼
Idea: Use min heap to maintain current minimum among k lists

äøŗä»€ä¹ˆęœ€ä¼˜:
- ęÆę¬”åŖéœ€č¦ęÆ”č¾ƒkäøŖå…ƒē“  (堆锶)
- ę’å…„/åˆ é™¤å †ę“ä½œ O(log k)
- 总共NäøŖčŠ‚ē‚¹ļ¼ŒęÆäøŖę’å…„/åˆ é™¤äø€ę¬”
- ꀻꗶ闓: O(N log k)

Why optimal:
- Only compare k elements (heap top) each time
- Heap insert/delete: O(log k)
- N total nodes, each inserted/deleted once
- Total time: O(N log k)
"""

heap = []

# 初始化堆: å°†ęÆäøŖé“¾č”Øēš„ē¬¬äø€äøŖčŠ‚ē‚¹åŠ å…„
# Initialize heap with first node from each list
for i, head in enumerate(lists):
if head:
# (value, list_index, node)
heapq.heappush(heap, (head.val, i, head))

# å“Øå…µčŠ‚ē‚¹ē®€åŒ–é“¾č”Øę“ä½œ
# Dummy node to simplify list operations
dummy = ListNode(0)
current = dummy

# ęŒē»­ä»Žå †äø­å–ęœ€å°å€¼
# Continuously extract minimum from heap
while heap:
val, i, node = heapq.heappop(heap)

# å°†čŠ‚ē‚¹ę·»åŠ åˆ°ē»“ęžœé“¾č”Ø
# Add node to result list
current.next = node
current = current.next

# å¦‚ęžœčÆ„é“¾č”Øčæ˜ęœ‰äø‹äø€äøŖčŠ‚ē‚¹ļ¼ŒåŠ å…„å †
# If list has next node, add to heap
if node.next:
heapq.heappush(heap, (node.next.val, i, node.next))

return dummy.next


# å¤ę‚åŗ¦åÆ¹ęÆ” / Complexity Comparison
"""
方法1 - ęš“åŠ›ę³•:
ę—¶é—“: O(N log N) - NäøŖå…ƒē“ ęŽ’åŗ
空闓: O(N) - å­˜å‚Øę‰€ęœ‰å€¼
ä¼˜ē‚¹: ē®€å•ę˜“ę‡‚
缺点: ę—¶é—“å¤ę‚åŗ¦č¾ƒé«˜

方法2 - åˆ†ę²»ę³•:
ę—¶é—“: O(N log k) - log kå±‚ļ¼ŒęÆå±‚Nę¬”ę“ä½œ
空闓: O(log k) - é€’å½’ę ˆ
ä¼˜ē‚¹: ę—¶é—“å¤ę‚åŗ¦ä¼˜
缺点: é€’å½’å®žēŽ°č¾ƒå¤ę‚

方法3 - ęœ€å°å † (ęŽØč):
ę—¶é—“: O(N log k) - Nę¬”ę’å…„ļ¼ŒęÆę¬”log k
空闓: O(k) - 堆大小
ä¼˜ē‚¹: ę—¶é—“ē©ŗé—“éƒ½ä¼˜ļ¼Œä»£ē ęø…ę™°
缺点: éœ€č¦ē†č§£å †ēš„ę¦‚åæµ

Approach 1 - Brute Force:
Time: O(N log N) - sort N elements
Space: O(N) - store all values
Pros: Simple to understand
Cons: Higher time complexity

Approach 2 - Divide & Conquer:
Time: O(N log k) - log k levels, N ops per level
Space: O(log k) - recursion stack
Pros: Optimal time complexity
Cons: Complex recursive implementation

Approach 3 - Min Heap (Recommended):
Time: O(N log k) - N insertions, log k each
Space: O(k) - heap size
Pros: Optimal time/space, clean code
Cons: Requires understanding of heaps
"""

# ē›øä¼¼é—®é¢˜ / Similar Problems
"""
1. Merge Two Sorted Lists (Easy) - åŸŗē”€ē‰ˆ
2. Sort List (Medium) - é“¾č”ØęŽ’åŗ
3. Find K Pairs with Smallest Sums (Medium) - ē›øä¼¼ę€č·Æ
4. Ugly Number II (Medium) - å¤šč·Æå½’å¹¶

1. Merge Two Sorted Lists (Easy) - Foundation
2. Sort List (Medium) - Linked list sorting
3. Find K Pairs with Smallest Sums (Medium) - Similar approach
4. Ugly Number II (Medium) - Multi-way merge
"""

DeepSeek Advantage: Shows ALL approaches, not just one solution

2. Learning Algorithms​

Pattern:

Explain [Algorithm/Data Structure] with:
1. When to use it
2. Time/space complexity
3. Python implementation
4. Real-world example
5. Common mistakes

Example:

Explain Binary Search Tree (BST) with:
- When to use vs array/hash map
- All operations (insert, search, delete)
- Python implementation
- Real-world use cases
- Common pitfalls

DeepSeek provides comprehensive tutorial with diagrams (in text), code, and examples.

3. Code Optimization​

Pattern:

Optimize this code for [metric]:

[paste code]

Analyze:
1. Current complexity
2. Bottlenecks
3. Optimized approach
4. Trade-offs

Example:

# Original: Slow for large lists
def find_duplicates(nums):
duplicates = []
for i in range(len(nums)):
for j in range(i + 1, len(nums)):
if nums[i] == nums[j] and nums[i] not in duplicates:
duplicates.append(nums[i])
return duplicates

# Prompt to DeepSeek:
"""
Optimize this duplicate finder:

[code above]

Current time complexity: O(n²)
Target: O(n)

Explain optimization approach with bilingual comments.
"""

DeepSeek Response:

def find_duplicates(nums):
"""
ä¼˜åŒ–ę–¹ę”ˆ: ä½æē”Øé›†åˆčæ½čøŖå·²č§ę•°å­—
Optimization: Use sets to track seen numbers

åŽŸå§‹å¤ę‚åŗ¦: O(n²) - åŒé‡å¾ŖēŽÆ
ä¼˜åŒ–åŽå¤ę‚åŗ¦: O(n) - äø€ę¬”éåŽ†

Original: O(n²) - nested loops
Optimized: O(n) - single pass
"""

seen = set() # å·²č§čæ‡ēš„ę•°å­—
duplicates = set() # é‡å¤ēš„ę•°å­—

for num in nums:
if num in seen:
# å¦‚ęžœå·²č§čæ‡ļ¼ŒčÆ“ę˜Žę˜Æé‡å¤
# If seen before, it's a duplicate
duplicates.add(num)
else:
# å¦åˆ™ļ¼ŒåŠ å…„å·²č§é›†åˆ
# Otherwise, add to seen set
seen.add(num)

return list(duplicates)

# ę€§čƒ½åÆ¹ęÆ” / Performance Comparison
"""
č¾“å…„å¤§å° / Input Size: n = 10,000

åŽŸå§‹ę–¹ę³• / Original:
- ę—¶é—“: ~5 seconds
- 空闓: O(n) (ē»“ęžœåˆ—č”Ø)
- ę“ä½œę¬”ę•°: ~50,000,000 ę¬”ęÆ”č¾ƒ

ä¼˜åŒ–ę–¹ę³• / Optimized:
- ę—¶é—“: ~0.001 seconds (5000x faster!)
- 空闓: O(n) (äø¤äøŖé›†åˆ)
- ę“ä½œę¬”ę•°: ~10,000 ę¬”ęŸ„ę‰¾

关键优化 / Key Optimization:
é›†åˆęŸ„ę‰¾ O(1) vs åˆ—č”ØéåŽ† O(n)
Set lookup O(1) vs List iteration O(n)
"""

# 测试
import time

large_list = list(range(5000)) * 2 # 10,000 elements, each appears twice

# Original (would take ~5 seconds, commented out)
# start = time.time()
# result1 = find_duplicates_slow(large_list)
# print(f"Original: {time.time() - start:.3f}s")

# Optimized
start = time.time()
result2 = find_duplicates(large_list)
print(f"Optimized: {time.time() - start:.6f}s") # ~0.001s

šŸŽ“ Study Guide: 30-Day Algorithm Mastery​

Use DeepSeek to master algorithms for free:

Week 1: Arrays & Strings​

Daily pattern:

Day 1: Two Pointers technique
- Explain with examples
- Solve 3 problems
- Bilingual comments

Day 2: Sliding Window
[same pattern]

DeepSeek Prompt:

I want to master Two Pointers technique.

Provide:
1. Concept explanation (ē®€å•ę˜“ę‡‚)
2. When to use vs other approaches
3. Template code pattern
4. 3 problems (Easy → Medium → Hard)
5. Complete solutions with Chinese comments

Week 2: Hash Maps & Sets​

Week 3: Stacks & Queues​

Week 4: Trees & Graphs​

Track progress in DeepSeek:

I'm on Day 15 of algorithm study (Trees topic).

Yesterday I learned:
- Binary tree traversal (preorder, inorder, postorder)
- Solved 3 problems

Today's goal:
- Learn BST operations
- Solve 2 BST problems

Guide my study session:
1. Quick review of yesterday
2. Today's new concept (BST)
3. 2 practice problems
4. Summary and tomorrow's preview

šŸ’” DeepSeek Best Practices​

1. Leverage Bilingual Strength​

# āœ… Good: Request bilingual output
"Solve with Chinese comments for key logic, English for general"

# This helps:
# - Chinese speakers understand faster
# - Learn English technical terms
# - Good documentation practice

2. Ask for Multiple Solutions​

# āœ… DeepSeek excels at showing alternatives

"Provide 3 approaches:
1. Brute force (for understanding)
2. Optimized (for interviews)
3. Most Pythonic (for production)

Compare time/space complexity."

3. Use for Interview Prep​

# āœ… Mock interview format

"Act as a Google interviewer.

Problem: [LeetCode problem]

After I submit solution:
1. Ask follow-up questions
2. Request optimization
3. Test edge cases
4. Rate my performance (1-10)

I'll respond with my code."

Example Session:

You: [Submit solution]

DeepSeek (as interviewer):
"Good start! Your solution works. Follow-ups:

1. What's the time complexity? Can you prove it?
2. How would you handle if input array is sorted?
3. What if we need to find 3 numbers that sum to target?
4. Any edge cases you might have missed?

Your solution rating: 7/10
- āœ… Correct logic
- āœ… Clean code
- āš ļø Can optimize space from O(n) to O(1)
- āš ļø Didn't mention edge case: empty array

Want to try optimizing?"

šŸ†š DeepSeek vs Paid Alternatives​

FeatureDeepSeekChatGPT PlusClaude Pro
CostFREE$20/mo$20/mo
Algorithm Quality⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
Code Generation⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
Bilingual⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐
No VPN (China)āœ…āŒāŒ
SpeedMediumFastFast
Usage LimitsNoneHigh limitsHigh limits

Bottom Line:

  • For algorithms/LeetCode: DeepSeek = ChatGPT Plus (same quality, free!)
  • For general coding: ChatGPT Plus slightly better
  • For China developers: DeepSeek is the obvious choice

šŸš€ Advanced Tips​

1. Chain Complex Problems​

# Break down hard problems into steps

Step 1:
"Explain the sliding window technique for this problem:
[problem description]"

Step 2:
"Now show me the code structure (pseudocode)"

Step 3:
"Implement in Python with full comments"

Step 4:
"Add 5 test cases covering edge cases"

Step 5:
"Optimize for space complexity"

2. Learn by Teaching​

"I'll explain my understanding of [concept].
You act as a teacher and correct any misconceptions.

My explanation:
[your understanding]

Please:
1. Point out what's correct
2. Clarify misconceptions
3. Fill in gaps
4. Provide better mental model"

3. Pattern Recognition​

"I've solved these 3 problems:
1. [Problem A]
2. [Problem B]
3. [Problem C]

What common pattern do they share?
Teach me the pattern so I can solve similar problems."

šŸ“Š Success Metrics​

After 30 days with DeepSeek:

MetricBeforeAfter
LeetCode solved50200+
Problem-solving speed45 min/problem15 min/problem
Algorithm understandingBasicSolid
Interview confidence5/108/10
Cost spent$0$0 (still free!)

Student Testimonials:

"Passed Google interview after 3 months using DeepSeek daily for LeetCode. Saved $60 not paying for ChatGPT Plus." - Chen, Software Engineer

"DeepSeek's bilingual comments helped me learn both English technical terms and algorithms. Now I'm comfortable in English-speaking teams." - Ꝏ꘎, Full-stack Developer


āš ļø Limitations​

What DeepSeek Doesn't Do Well​

  1. Real-time Code Completion

    • Use: Cursor, Copilot instead
    • DeepSeek is chat-based, not IDE-integrated
  2. Large Codebase Analysis

    • Better: Kimi K2 (2M context)
    • DeepSeek: ~64K context limit
  3. Cutting-edge Frameworks

    • DeepSeek knowledge cutoff: Mid-2024
    • May not know libraries released after that
  4. Production DevOps

    • Adequate but not specialized
    • Consider Claude for production systems

When to Upgrade to Paid​

Consider ChatGPT Plus / Claude if:

  • āœ… You need latest framework knowledge
  • āœ… You do production system design
  • āœ… You need faster responses
  • āœ… You want IDE integration

But for algorithms/learning: DeepSeek is perfect (and free!)


šŸ”— Resources​

Official:

Community:

Learning:


šŸ“ Quick Reference​

Essential Prompts​

# Algorithm Study
"Explain [algorithm] with bilingual comments, multiple approaches, and complexity analysis"

# Problem Solving
"Solve [problem] with: 1) Approach explanation, 2) Code with comments, 3) Test cases, 4) Complexity analysis"

# Code Review
"Review this code for: 1) Correctness, 2) Optimization opportunities, 3) Edge cases, 4) Best practices"

# Interview Prep
"Act as interviewer. Problem: [X]. After my solution, give feedback and follow-ups."

# Debugging
"This code has a bug: [code]. Error: [error]. Explain what's wrong and fix it."

Last Updated: 2025-11-09 | Difficulty: All Levels | Cost: FREE

Compare DeepSeek with other tools in our AI Coding Tools Comparison.